
RELIABLE FILE TRANSFER IN GRID ENVIRONMENTS

Ravi K Madduri
Argonne National Laboratory, Illinois Institute of Technology

madduri@mcs.anl.gov
Cynthia S. Hood

Illinois Institute of Technology
hood@iit.edu

William E. Allcock
Argonne National Laboratory

allcock@mcs.anl.gov

Abstract

Grid-based computing environments are
becoming increasingly popular for scientific
computing. One of the key issues for scientific
computing is the efficient transfer of large amounts of
data across the Grid. In this poster we present a
Reliable File Transfer (RFT) service that significantly
improves the efficiency of large-scale file transfer.
RFT can detect a variety of failures and restart the file
transfer from the point of failure. It also has
capabilities for improving transfer performance
through TCP tuning.

1 Introduction

As scientific computing efforts make
increasing use of Grid-based computing environments,
file transfer operations become a key focus. Data-
intensive, high-performance computing applications
require the efficient management and transfer of
terabytes or petabytes of information across the Grid.
Examples of such applications include experimental
analyses and simulations in scientific disciplines such
as high-energy physics, climate modeling, earthquake
engineering, and astronomy. In these applications,
massive datasets must be transferred between the
machines involved in the computation. Although the
underlying file transfer utilities currently in use are
well established and continue to be improved in terms
of both efficiency and security, they do not provide a
persistent file transfer service that can be easily
invoked and trusted to complete in all but the most dire
of circumstances. In this paper we describe a Reliable
File Transfer (RFT) service that significantly improves
the efficiency of large-scale file transfer.

The Reliable File Transfer Service is built on
top of the existing GridFTP [1] client libraries. It
inherits the performance and features provided by
GridFTP such as restart support. However, GridFTP
requires that the client remains active until the transfer

finishes. Loss of the client state machine requires a
manual restart from scratch. This situation motivates
the development of Reliable File Transfer Service, a
non-user-based service where a user can submit a
request for transferring a set of files and free his/her
local desktop or laptop. The transfer state is stored in a
persistent manner so that in case of failure, the transfer
is started not from scratch but from the last restart
marker recorded for that transfer. The architecture of
RFT is shown in Figure 1.

We employ a proactive approach to detect
failures and recover gracefully. Specifically, we
evaluate the information available at various levels,
match the actions that can be taken with the
information that is available, and take action
appropriately at the application level. The information
that is available at various levels is described below.

Figure 1. RFT architecture

1.1 Application Level

At the application level the file transfer client
program performs the transfer. The client can be

mailto:madduri@mcs.anl.gov
mailto:allcock@mcs.anl.gov

monitored by having a thread wait on it. Using the exit
value process, this thread detects when the program
crashes and restarts the process if the exit value
indicates that the process has crashed or failed. The
state of the application may be stored to a persistent
storage so that it can be restored.

1.2 Network Level

 At the network level we receive information
from TCP. TCP is a connection-oriented protocol that
keeps track of the packets sent from the sender and
checks to see whether these packets are received at the
receiver end. TCP has information about the packets
that are not acknowledged. The TCP retry mechanism
takes care of packet losses and retransmissions; but
when there is a network outage, the connection cannot
be saved through TCP. The client that is performing
the transfer uses acknowledgment timeouts to detect
that the host that it is trying to transfer to is no longer
reachable. The destination host can become
unreachable for many different reasons. At this point
the client must wait for the network problems to be
resolved and then retry the transfer. The client will
retry the transfer periodically until it either goes
through or times out.

The TCP buffer size can be adjusted by using
negotiation between the source and destination
machines. This negotiation can be automated and has
the potential to increase the efficiency of the data
transfer. Data can also be transferred in multiple
streams, thereby reducing the impact of network
congestion and subsequent setin of the TCP back-off
mechanism on any one of the streams.

1.3 System Level

For a file transfer operation, a system-level
failure can occur in three different places that are
involved in the data transfer: the source host, the
destination host, and the host that controls the transfer
between these two hosts. If a particular host crashes or
gets rebooted by the system administrator, the
application can recover from the crash if its state has
been stored to a secondary storage device. Recovery
can be achieved by having the application start along
with other system services and recover its state from
disk.

2 Implementation

RFT monitors the state of the transfer and
recovers from a variety of failures. The Reliable File
Transfer service performs two services:

• It implements the transfer restart mechanisms
provided for by GridFTP [1]. These
mechanisms handle the failure of the RFT

service itself or of either of the GridFTP data
mover processes.

• It allows for the failure and restart of client
applications. Upon restart, the applications
can reconnect to the data transfer requests that
they previously initiated. The data transfer
requests are stored to persistent secondary
storage so they can be recovered after a
failure.

The Failure Recovery Mechanism provides RFT
with the ability to recover from failures, such as server
crashes and network outages. The Java service forks
off the transfer client with appropriate parameters and
then monitors the transfer by waiting on the transfer
client. The transfer client is programmed to provide the
service three kinds of exit codes. The success code is
returned when the transfer client successfully transfers
a given file. The fatal code is returned when the
transfer cannot be completed; it indicates that there is a
problem that cannot be solved with a simple retry
mechanism. The nonfatal error code encompasses
anything that does not fit into the other two exit codes.
It denotes that something went wrong while trying to
perform that transfer, but the transfer can be recovered
from by a simple retry.

When the client returns a fatal error (e.g., when the
source URL or destination URLs are not valid), the
service will not restart the failed transfer. When the
client returns a nonfatal error (which can be anything
from a crashed server to network outage), the service
will restart the transfer from the last restart marker
received. The number of times the service tries to
restart a transfer can be configured before starting the
service. RFT provides failure recovery mechanisms
for all the failure conditions by taking predetermined
appropriate action depending on the information
received at different levels.

3 Summary
 RFT was thoroughly tested and found to
recover from a variety of failures. The longest test ran
for three days, transferring 0.3 terabytes of data. It was
showcased at Supercomputing 2001 as one of the
applications from Argonne National Laboratory. Future
work includes automatic TCP tuning and adjustment of
the number of parallel streams. RFT is now one of the
higher-level services in the Globus Toolkit™. We are
also working on integrating RFT with the Replica
Catalog Selection Service of the Globus Toolkit™.

Acknowledgments

This work was supported by the Mathematical,
Information, and Computational Sciences Division

subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy,
under Contract W-31-109-ENG-38.

Reference

[1] GridFTP: Universal Data Transfer for the Grid

 http://www.globus.org/datagrid/gridftp.html

http://www.globus.org/datagrid/gridftp.html

	Argonne National Laboratory
	3 Summary
	Acknowledgments

